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Institute of Theoretical Physics, University of Wrocław, Pl. M. Borna 9, 50-204 Wrocław, Poland

E-mail: ajam@ift.uni.wroc.pl

Received 15 February 2006, in final form 5 May 2006
Published 31 May 2006
Online at stacks.iop.org/JPhysA/39/7727

Abstract
We consider spontaneous emission of two two-level atoms interacting with
vacuum fluctuations. We study the process of disentanglement in this system
and show the possibility of changing disentanglement time by local unitary
operations.

PACS numbers: 03.65.w, 03.67.a

1. Introduction

Creation of the entangled quantum states and its ability to transmit information is the base for
quantum information [1]. Recently, the subject has been intensively studied basically for two
reasons. First, the understanding of entanglement creation gives deep insight into the quantum
mechanics foundations, and second, possible applications in quantum cryptography, quantum
computing or teleportation of states are very promising. Hence, one of the main aims of such
study is to get the knowledge about the complex nature of entanglement and its evolution in
time.

In practice, every quantum system is open and susceptible to interaction with its
environment. This may lead to the dissipation and destruction of correlations. Due to
that, entanglement may disappear even though the system was initially in the entangled state.
To control the process of disentanglement it is important to preserve as much entanglement as
possible, because if entanglement once has been lost, it cannot be restored by local operations.

Spontaneous emission in two-atomic systems is an example of such noise which can
diminish entanglement [2]. On the other hand, due to the possible photon exchange between
atoms, even in that case some separable initial states can evolve to entangled states [3]. In
particular, when the interatomic distance is very small (compared with radiation wavelength),
the produced entanglement remains non-zero also for asymptotic states [4].

In the present paper we study the simpler model of two atoms situated in independent
thermostats at zero temperature. Since the atoms are separated by large distance, dipol–dipol
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interaction and photon exchange between atoms are negligible. Reduced dynamics of the
system is given (in the Markovian approximation) by the semi-group of completely positive
linear mappings [5] with generator L parametrized only by the spontaneous emission rate of
the single atom. In this model, the dynamics brings all initial states into unique asymptotic
pure state, in which two atoms are in their ground states. Contrary to the infinite temperature
case considered in [6], where the neighbourhood of the asymptotic state contains only separable
states, this asymptotic state lies on the boundary of the set of all states and there are separable
as well as entangled states which are close to it. So there are initial entangled states which need
only finite time to become separable during the evolution (they have finite disentanglement
time), and on the other hand some initial states disentangle asymptotically (they have infinite
disentanglement time).

The main goal of the present paper is to study local aspects of the process of
disentanglement induced by spontaneous emission. We address the following question: what
influence on the process of disentanglement can local unitary operations performed on initial
states have? As we show, local operations can change the robustness of initial entanglement
against the noise, leading in some cases to enlarging the time needed to disentangle the state.
In some classes of pure states, simple local unitary operation can even change this time from
finite to infinite. The same is true for Werner states. (Similar phenomenon was studied in [7]).

We consider also non-local properties of quantum states which are manifested by violation
of Bell–CHSH inequalities. As we show, during the evolution of the system initial states
violating these inequalities become local after the finite time, even if disentanglement time is
infinite.

2. Spontaneous emission and evolution of entangled two-atomic systems

Let us consider two two-level atoms A and B. Their excited states |1〉A(B) and ground states
|0〉A(B) we identify with vectors e1 = (1

0

)
and e2 = (0

1

)
in C

2. Since the atoms are separated by
the long distance, it can be assumed that they are located inside two independent environments.
The time evolution of density matrix of the considered system can be described by the master
equation [5]:

d�

dt
= L� = �AA

2

[
2σA

− �σA
+ − σA

+ σA
− � − �σA

+ σA
−

]
+

�BB

2

[
2σB

− �σB
+ − σB

+ σB
− � − �σB

+ σB
−

]
(2.1)

with definitions

σA
± = σ± ⊗ I, σB

± = I ⊗ σ±, σA
3 = σ3 ⊗ I, σB

3 = I ⊗ σ3, σ± = 1
2 (σ1 ± iσ2).

In the following we consider two identical atoms, so �AA = �BB = �0, where �0 is the single
atom spontaneous emission rate. Equation (2.1) can be used to obtain the equation of matrix
elements of density matrix with respect to the basis |1〉 ⊗ |1〉, |1〉 ⊗ |0〉, |0〉 ⊗ |1〉, |0〉 ⊗ |0〉

ρ11(t) = e−2�0t ρ11(0) (2.2)

ρ12(t) = e− 3
2 �0t ρ12(0) (2.3)

ρ13(t) = e− 3
2 �0t ρ13(0) (2.4)

ρ14(t) = e−�0t ρ14(0) (2.5)

ρ22(t) = e−�0t (ρ22(0) + ρ11(0)) − e−2�0t ρ11(0) (2.6)

ρ23(t) = e−�0t ρ23(0) (2.7)
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ρ24(t) = e− 1
2 �0t (ρ13(0) + ρ24(0)) − e−2�0t ρ13(0) (2.8)

ρ33(t) = e−�0t (ρ33(0) + ρ11(0)) − e−2�0t ρ11(0) (2.9)

ρ34(t) = e− 1
2 �0t (ρ12(0) + ρ34(0)) − e− 3

2 �0t ρ12(0) (2.10)

ρ44(t) = 1 + e−2�0t ρ11(0) − e−�0t (1 − ρ44(0) + ρ11(0)). (2.11)

The remaining matrix elements can be obtained using the hermiticity condition ρkj = ρ̄jk . In
this model the relaxation process brings all initial states to the unique asymptotic state when
both atoms are in their ground states:

ρ∞ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 . (2.12)

As a measure of the amount of entanglement of the given state of compound system AB,
we take entanglement of formation [8] which for mixed states is given by

E(ρ) = min
∑

k

λkE(Pk), (2.13)

where the minimum is taken over all possible decompositions

ρ =
∑

k

λkPk. (2.14)

In the special case of four-level systems, E(ρ) is the function of another useful quantity C(ρ)

called concurrence, which we use here as a measure of entanglement [9, 10]. The concurrence
is defined as

C = max
(
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (2.15)

where λi are eigenvalues of the matrix

ρ̂ = (
ρ

1
2 ρ̃ρ

1
2
) 1

2 (2.16)

with ρ̃ given by

ρ̃ = (σ2 ⊗ σ2)ρ̄(σ2 ⊗ σ2), (2.17)

where ρ̄ is the complex conjugation of the matrix ρ. The range of concurrence is from 0 for
separable states, to 1 for maximally entangled pure states.

In general concurrence is difficult to calculate analytically, so we consider the class of
density matrices ρ

ρ =




ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ23 ρ33 0

ρ41 0 0 ρ44


 . (2.18)

One can check that the class of states given by (2.18) is invariant with respect to the time
evolution considered in the paper, and

C(ρ) = max{0, C1, C2}, (2.19)

where

C1 = 2(|ρ14| − √
ρ22ρ33) (2.20)

C2 = 2(|ρ23| − √
ρ11ρ44). (2.21)
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In particular when ρ14 = 0 one can see that C1 cannot be positive, so only C2, if it is positive,
contributes to the concurrence. Analogously when ρ23 = 0 only C1 can be considered.

Consider now the evolution of initial states (2.18). If ρ23 = 0, then

ρt =




ρ11(t) 0 0 ρ14(t)

0 ρ22(t) 0 0
0 0 ρ33(t) 0

ρ41(t) 0 0 ρ44(t)


 (2.22)

and

C(ρt ) = max{0, C1(t)}, (2.23)

where

C1(t) = 2 e−�0t
[|ρ14| −

√
e−2�0t ρ2

11 − e−�0t ρ11(1 − ρ44 + ρ11) + (ρ11 + ρ22)(ρ11 + ρ33)
]
.

(2.24)

In equation (2.24), ρjk denote matrix elements of the initial state.
On the other hand, if ρ14 = 0, then

ρt =




ρ11(t) 0 0 0
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
0 0 0 ρ44(t)


 (2.25)

and

C(ρt ) = max{0, C2(t)}, (2.26)

where

C2(t) = 2 e−�0t
[|ρ23| −

√
1 + e−2�0t ρ2

11 − e−�0t ρ11(1 + ρ11 − ρ44)
]
. (2.27)

3. Disentanglement time

In this section we study in details the time evolution of concurrence for some classes of initial
states. Depending on the initial state, concurrence can reach value equal to zero asymptotically
or at finite time. What is much more interesting, locally equivalent initial states with the same
concurrence can disentangle at different times. It is even possible to change the time of
disentanglement from finite to infinite. We show that this phenomenon happens for some
classes of pure states and for Werner states.

3.1. Some pure initial states

Let

φ = 1√
2

(√
1 +

√
1 − C2, 0, 0,

√
1 −

√
1 − C2

)
(3.1)

and Pφ be the corresponding projection operator

Pφ = 1

2




1 +
√

1 − C2 0 0 C

0 0 0 0
0 0 0 0

C 0 0 1 − √
1 − C2


 . (3.2)
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Then

Pφ(t) =




c̃ e−2�0t 0 0 C
2 e−�0t

0 c̃(e−�0t − e−2�0t ) 0 0
0 0 c̃(e−�0t − e−2�0t ) 0

C
2 e−�0t 0 0 1 − 2c̃ e−�0t + c̃ e−2�0t


, (3.3)

where

c̃ = 1
2 (1 +

√
1 − C2). (3.4)

By (2.24) the time evolution of this initial concurrence C is described by the following function:

C(Pφ(t)) = e−2�0t (1 +
√

1 − C2) − e−�0t (1 − C +
√

1 − C2). (3.5)

We see that this function becomes equal to zero at time td(φ) (time of disentanglement), which
is given by

td(φ) =
ln

(
1
2

(
1 +

√
1+C
1−C

))
�0

. (3.6)

This time is finite for C ∈ [0, 1). When C = 1 the states are maximally entangled
and disentangled asymptotically. On the other hand, for locally equivalent pure states
ψ = (σ1 ⊗ I2)φ:

ψ = 1√
2

(
0,

√
1 +

√
1 − C2,

√
1 −

√
1 − C2, 0

)
(3.7)

with projection operator

Pψ = 1

2




0 0 0 0

0 1 +
√

1 − C2 C 0

0 C 1 − √
1 − C2 0

0 0 0 0


 (3.8)

time evolution is given by

Pψ(t) =




0 0 0 0

0 1
2 (1 +

√
1 − C2) e−�0t C

2 e−�0t 0

0 C
2 e−�0t 1

2 (1 − √
1 − C2) e−�0t 0

0 0 0 1 − e−�0t


 (3.9)

and

C(Pψ(t)) = e−�0tC. (3.10)

We see that this function asymptotically goes to zero, so we can say that states (3.8) disentangle
at infinite time. Thus we show that locally equivalent pure states with the same entanglement
behave very differently during the time evolution and simple local unitary operation performed
on initial state can change disentanglement time from finite to infinite. Note that the states
(3.2) are similar to the Bell states 1√

2
(e1 ⊗ e1 ± e2 ⊗ e2), on the other hand, the states (3.8) are

similar to the other orthogonal Bell states 1√
2
(e1 ⊗ e2 ± e1 ⊗ e2) which disentangle slower. It

seems that this is the specific difference between the class (3.2) and (3.8) which leads to such
behaviour.
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C 1

0.8

0.6

0.4

0.2

1 2 3 4 5 6

Γ0t

Figure 1. Concurrence as a function of time for initial state (3.8) (dotted line) and (3.2) (solid
line) with C = 4

5 .

3.2. Werner states

Similar phenomenon occurs for some mixed states. Consider the class of Werner states [11]

W�± = (1 − p)
I4

4
+ p|�±〉〈�±|, (3.11)

W	± = (1 − p)
I4

4
+ p|	±〉〈	±|, (3.12)

where p ∈ [0, 1] and 	±, �± are maximally entangled pure Bell states defined as follows:

�± = 1√
2
[e1 ⊗ e2 ± e2 ⊗ e1], (3.13)

and

	± = 1√
2
[e1 ⊗ e1 ± e2 ⊗ e2]. (3.14)

Since

W	±(t) =




1
4 e−2γ t (1 + p) 0 0 ± 1

2 e−γ tp

0 1
2 e−γ t − 1

4 e−2γ t (1 + p) 0 0

0 0 1
2 e−γ t − 1

4 e−2γ t (1 + p) 0

± 1
2 e−γ tp 0 0 1 − 1

2 e−γ t + 1
4 e−2γ t (1 + p)




(3.15)

and

C
(
W	±(t)

) = e−�0tp − 1
2 |e−2�0t (1 + p) − 2| (3.16)

we see that

td(W	±) =
ln

(
1
2

( 1+p

1−p

))
�0

(3.17)

and this time is finite if p ∈ [
1
3 , 1

]
. On the other hand

W�±(t) =




1
4 e−2γ t (1 − p) 0 0 0

0 1
2 e−γ t − 1

4 e−2γ t (1 − p) ± 1
2 e−γ tp 0

0 ± 1
2 e−γ tp 1

2 e−γ t − 1
4 e−2γ t (1 − p) 0

0 0 0 1 − 1
2 e−γ t + 1

4 e−2γ t (1 − p)




(3.18)
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C 1

0.8

0.6

0.4

0.2

1 2 3 4 5 6

Γ0t

Figure 2. Concurrence as a function of time for initial state W�± (dotted line) and W	± (solid
line) with p = 3

4 .

and

C
(
W�±(t)

) = e−�0tp − 1
2 e−�0t

√
e−2�0t (1 − p)2 − 4(1 − p)(1 − e−�0t ). (3.19)

When p ∈ [
1
3 , −1+

√
5

2

)
this function is monotonically decreasing and reaches zero at time

td
(
W�±

) = 1

�0
ln

−1 + p −
√

(−1 + p)2p(1 + p)

2(1 − p − p2)
. (3.20)

But when p ∈ [−1+
√

5
2 , 1

]
, C

(
W�±(t)

)
goes to zero asymptotically, so we conclude that the

disentanglement time is infinite. Note that

W	+ = (I2 ⊗ iσ2)W�−(I2 ⊗ −iσ2), W	− = (I2 ⊗ σ1)W�−(I2 ⊗ σ1).

If p ∈ [−1+
√

5
2 , 1

]
then the states W	± have the finite disentanglement time, whereas locally

equivalent to them W�± disentangle asymptotically.

4. CHSH inequalities

Let us discuss now violation of Bell–CHSH inequalities by states evolving in time. It is known
that all pure states violate Bell–CHSH inequalities whenever they are entangled. In the case
of mixed states of two two-level systems, we can apply the following criterion [12, 13]: let

m(ρ) = max
j<k

(uj + uk), (4.1)

where uj , j = 1, 2, 3 are the eigenvalues of real symmetric matrix Uρ given by

Uρ = T T
ρ Tρ (4.2)

with Tρ = (tnm), tnm = tr(ρσn ⊗ σm). Then ρ violates Bell–CHSH inequalities if and only if
m(ρ) � 1. For the class (2.18)

m(ρ) = max(u1, u2), (4.3)

where

u1 = 8(|ρ14|2 + |ρ23|2) (4.4)

and

u2 = 4(|ρ14|2 + |ρ23|2) +
√

(ρ23 + ρ32)2(4|ρ14|2 + (ρ23 − ρ32)2) + (−1 + 2(ρ11 + ρ44))
2.

(4.5)
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Since interaction with environment destroys correlations, we expect that states which initially
violate Bell–CHSH inequalities, during the evolution become local i.e. non-violating these
inequalities. Consider for example pure initial states (3.2). One can check that

m(Pφ(t)) = max(u1, u2), (4.6)

where

u1 = 2 e−2�0tC2 (4.7)

and

u2 = e−2�0tC2 + (1 − 2 e−�0t )2. (4.8)

From the condition m(ρ) = 1 we can calculate the locality time tloc, after which Bell–CHSH
inequalities are satisfied, and we obtain

tloc =



ln
(

1+ C2

4

)
�0

, C ∈ [0, 2(−1 +
√

2)]

ln 2C2

2�0
, C ∈ [2(−1 +

√
2)], 1].

(4.9)

For all t ∈ [0, tloc] the states Pφ(t) are entangled and violate Bell–CHSH inequalities.
On the other hand, in the case of initial states (3.8) this time is the same. We see that

even if locally equivalent initial states disentangle at different times, the time after which they
become local is the same. Similar calculations can be done for Werner initial states. Consider
p ∈ [

1√
2
, 1

]
. Then initial states violate Bell–CHSH inequalities and

m
(
W�±(t)

) = m
(
W	±(t)

) = 2 e−2�0tp2 (4.10)

so

tloc = ln 2p2

2�0
. (4.11)

5. Conclusions

We considered two atoms and studied the dynamic of their disentanglement due to spontaneous
emission. The main conclusion of this paper is that we can change the time of disentanglement
from finite to infinite using only local unitary transformations. It was shown for Werner states,
and for some class of pure states.
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